Copied to
clipboard

G = C6210Q8order 288 = 25·32

3rd semidirect product of C62 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial

Aliases: C6210Q8, C62.245C23, (C2×C6)⋊10Dic6, (C2×C12).387D6, (C3×C12).153D4, C6.45(C2×Dic6), (C22×C12).23S3, C625C4.7C2, C6.Dic62C2, (C22×C6).154D6, C6.105(C4○D12), C12⋊Dic311C2, C3223(C22⋊Q8), C35(C12.48D4), C12.118(C3⋊D4), (C6×C12).303C22, C4.23(C327D4), C223(C324Q8), (C2×C62).106C22, C2.17(C12.59D6), (C2×C6×C12).8C2, (C3×C6).59(C2×Q8), (C3×C6).273(C2×D4), C6.114(C2×C3⋊D4), C23.25(C2×C3⋊S3), (C2×C324Q8)⋊8C2, C2.5(C2×C327D4), C2.9(C2×C324Q8), (C22×C4).7(C3⋊S3), (C3×C6).120(C4○D4), (C2×C6).262(C22×S3), C22.54(C22×C3⋊S3), (C2×C3⋊Dic3).89C22, (C2×C4).84(C2×C3⋊S3), SmallGroup(288,781)

Series: Derived Chief Lower central Upper central

C1C62 — C6210Q8
C1C3C32C3×C6C62C2×C3⋊Dic3C2×C324Q8 — C6210Q8
C32C62 — C6210Q8
C1C22C22×C4

Generators and relations for C6210Q8
 G = < a,b,c,d | a6=b6=c4=1, d2=c2, ab=ba, ac=ca, dad-1=a-1b3, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 668 in 222 conjugacy classes, 89 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, C32, Dic3, C12, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C2×C12, C22×C6, C22⋊Q8, C3⋊Dic3, C3×C12, C3×C12, C62, C62, C62, Dic3⋊C4, C4⋊Dic3, C6.D4, C2×Dic6, C22×C12, C324Q8, C2×C3⋊Dic3, C6×C12, C6×C12, C2×C62, C12.48D4, C6.Dic6, C12⋊Dic3, C625C4, C2×C324Q8, C2×C6×C12, C6210Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, C3⋊S3, Dic6, C3⋊D4, C22×S3, C22⋊Q8, C2×C3⋊S3, C2×Dic6, C4○D12, C2×C3⋊D4, C324Q8, C327D4, C22×C3⋊S3, C12.48D4, C2×C324Q8, C12.59D6, C2×C327D4, C6210Q8

Smallest permutation representation of C6210Q8
On 144 points
Generators in S144
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 11 35 14 39 41)(2 12 36 15 37 42)(3 10 34 13 38 40)(4 49 16 29 8 45)(5 50 17 30 9 43)(6 51 18 28 7 44)(19 59 25 46 68 52)(20 60 26 47 69 53)(21 58 27 48 67 54)(22 71 57 33 63 65)(23 72 55 31 61 66)(24 70 56 32 62 64)(73 116 84 76 119 81)(74 117 79 77 120 82)(75 118 80 78 115 83)(85 121 99 88 124 102)(86 122 100 89 125 97)(87 123 101 90 126 98)(91 129 112 94 132 109)(92 130 113 95 127 110)(93 131 114 96 128 111)(103 140 138 106 143 135)(104 141 133 107 144 136)(105 142 134 108 139 137)
(1 70 44 26)(2 71 45 27)(3 72 43 25)(4 48 12 57)(5 46 10 55)(6 47 11 56)(7 60 41 24)(8 58 42 22)(9 59 40 23)(13 61 17 52)(14 62 18 53)(15 63 16 54)(19 38 66 30)(20 39 64 28)(21 37 65 29)(31 50 68 34)(32 51 69 35)(33 49 67 36)(73 141 92 122)(74 142 93 123)(75 143 94 124)(76 144 95 125)(77 139 96 126)(78 140 91 121)(79 108 114 90)(80 103 109 85)(81 104 110 86)(82 105 111 87)(83 106 112 88)(84 107 113 89)(97 119 136 127)(98 120 137 128)(99 115 138 129)(100 116 133 130)(101 117 134 131)(102 118 135 132)
(1 78 44 91)(2 74 45 93)(3 76 43 95)(4 111 12 82)(5 113 10 84)(6 109 11 80)(7 129 41 115)(8 131 42 117)(9 127 40 119)(13 73 17 92)(14 75 18 94)(15 77 16 96)(19 104 66 86)(20 106 64 88)(21 108 65 90)(22 101 58 134)(23 97 59 136)(24 99 60 138)(25 144 72 125)(26 140 70 121)(27 142 71 123)(28 112 39 83)(29 114 37 79)(30 110 38 81)(31 100 68 133)(32 102 69 135)(33 98 67 137)(34 116 50 130)(35 118 51 132)(36 120 49 128)(46 107 55 89)(47 103 56 85)(48 105 57 87)(52 141 61 122)(53 143 62 124)(54 139 63 126)

G:=sub<Sym(144)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,11,35,14,39,41)(2,12,36,15,37,42)(3,10,34,13,38,40)(4,49,16,29,8,45)(5,50,17,30,9,43)(6,51,18,28,7,44)(19,59,25,46,68,52)(20,60,26,47,69,53)(21,58,27,48,67,54)(22,71,57,33,63,65)(23,72,55,31,61,66)(24,70,56,32,62,64)(73,116,84,76,119,81)(74,117,79,77,120,82)(75,118,80,78,115,83)(85,121,99,88,124,102)(86,122,100,89,125,97)(87,123,101,90,126,98)(91,129,112,94,132,109)(92,130,113,95,127,110)(93,131,114,96,128,111)(103,140,138,106,143,135)(104,141,133,107,144,136)(105,142,134,108,139,137), (1,70,44,26)(2,71,45,27)(3,72,43,25)(4,48,12,57)(5,46,10,55)(6,47,11,56)(7,60,41,24)(8,58,42,22)(9,59,40,23)(13,61,17,52)(14,62,18,53)(15,63,16,54)(19,38,66,30)(20,39,64,28)(21,37,65,29)(31,50,68,34)(32,51,69,35)(33,49,67,36)(73,141,92,122)(74,142,93,123)(75,143,94,124)(76,144,95,125)(77,139,96,126)(78,140,91,121)(79,108,114,90)(80,103,109,85)(81,104,110,86)(82,105,111,87)(83,106,112,88)(84,107,113,89)(97,119,136,127)(98,120,137,128)(99,115,138,129)(100,116,133,130)(101,117,134,131)(102,118,135,132), (1,78,44,91)(2,74,45,93)(3,76,43,95)(4,111,12,82)(5,113,10,84)(6,109,11,80)(7,129,41,115)(8,131,42,117)(9,127,40,119)(13,73,17,92)(14,75,18,94)(15,77,16,96)(19,104,66,86)(20,106,64,88)(21,108,65,90)(22,101,58,134)(23,97,59,136)(24,99,60,138)(25,144,72,125)(26,140,70,121)(27,142,71,123)(28,112,39,83)(29,114,37,79)(30,110,38,81)(31,100,68,133)(32,102,69,135)(33,98,67,137)(34,116,50,130)(35,118,51,132)(36,120,49,128)(46,107,55,89)(47,103,56,85)(48,105,57,87)(52,141,61,122)(53,143,62,124)(54,139,63,126)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,11,35,14,39,41)(2,12,36,15,37,42)(3,10,34,13,38,40)(4,49,16,29,8,45)(5,50,17,30,9,43)(6,51,18,28,7,44)(19,59,25,46,68,52)(20,60,26,47,69,53)(21,58,27,48,67,54)(22,71,57,33,63,65)(23,72,55,31,61,66)(24,70,56,32,62,64)(73,116,84,76,119,81)(74,117,79,77,120,82)(75,118,80,78,115,83)(85,121,99,88,124,102)(86,122,100,89,125,97)(87,123,101,90,126,98)(91,129,112,94,132,109)(92,130,113,95,127,110)(93,131,114,96,128,111)(103,140,138,106,143,135)(104,141,133,107,144,136)(105,142,134,108,139,137), (1,70,44,26)(2,71,45,27)(3,72,43,25)(4,48,12,57)(5,46,10,55)(6,47,11,56)(7,60,41,24)(8,58,42,22)(9,59,40,23)(13,61,17,52)(14,62,18,53)(15,63,16,54)(19,38,66,30)(20,39,64,28)(21,37,65,29)(31,50,68,34)(32,51,69,35)(33,49,67,36)(73,141,92,122)(74,142,93,123)(75,143,94,124)(76,144,95,125)(77,139,96,126)(78,140,91,121)(79,108,114,90)(80,103,109,85)(81,104,110,86)(82,105,111,87)(83,106,112,88)(84,107,113,89)(97,119,136,127)(98,120,137,128)(99,115,138,129)(100,116,133,130)(101,117,134,131)(102,118,135,132), (1,78,44,91)(2,74,45,93)(3,76,43,95)(4,111,12,82)(5,113,10,84)(6,109,11,80)(7,129,41,115)(8,131,42,117)(9,127,40,119)(13,73,17,92)(14,75,18,94)(15,77,16,96)(19,104,66,86)(20,106,64,88)(21,108,65,90)(22,101,58,134)(23,97,59,136)(24,99,60,138)(25,144,72,125)(26,140,70,121)(27,142,71,123)(28,112,39,83)(29,114,37,79)(30,110,38,81)(31,100,68,133)(32,102,69,135)(33,98,67,137)(34,116,50,130)(35,118,51,132)(36,120,49,128)(46,107,55,89)(47,103,56,85)(48,105,57,87)(52,141,61,122)(53,143,62,124)(54,139,63,126) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,11,35,14,39,41),(2,12,36,15,37,42),(3,10,34,13,38,40),(4,49,16,29,8,45),(5,50,17,30,9,43),(6,51,18,28,7,44),(19,59,25,46,68,52),(20,60,26,47,69,53),(21,58,27,48,67,54),(22,71,57,33,63,65),(23,72,55,31,61,66),(24,70,56,32,62,64),(73,116,84,76,119,81),(74,117,79,77,120,82),(75,118,80,78,115,83),(85,121,99,88,124,102),(86,122,100,89,125,97),(87,123,101,90,126,98),(91,129,112,94,132,109),(92,130,113,95,127,110),(93,131,114,96,128,111),(103,140,138,106,143,135),(104,141,133,107,144,136),(105,142,134,108,139,137)], [(1,70,44,26),(2,71,45,27),(3,72,43,25),(4,48,12,57),(5,46,10,55),(6,47,11,56),(7,60,41,24),(8,58,42,22),(9,59,40,23),(13,61,17,52),(14,62,18,53),(15,63,16,54),(19,38,66,30),(20,39,64,28),(21,37,65,29),(31,50,68,34),(32,51,69,35),(33,49,67,36),(73,141,92,122),(74,142,93,123),(75,143,94,124),(76,144,95,125),(77,139,96,126),(78,140,91,121),(79,108,114,90),(80,103,109,85),(81,104,110,86),(82,105,111,87),(83,106,112,88),(84,107,113,89),(97,119,136,127),(98,120,137,128),(99,115,138,129),(100,116,133,130),(101,117,134,131),(102,118,135,132)], [(1,78,44,91),(2,74,45,93),(3,76,43,95),(4,111,12,82),(5,113,10,84),(6,109,11,80),(7,129,41,115),(8,131,42,117),(9,127,40,119),(13,73,17,92),(14,75,18,94),(15,77,16,96),(19,104,66,86),(20,106,64,88),(21,108,65,90),(22,101,58,134),(23,97,59,136),(24,99,60,138),(25,144,72,125),(26,140,70,121),(27,142,71,123),(28,112,39,83),(29,114,37,79),(30,110,38,81),(31,100,68,133),(32,102,69,135),(33,98,67,137),(34,116,50,130),(35,118,51,132),(36,120,49,128),(46,107,55,89),(47,103,56,85),(48,105,57,87),(52,141,61,122),(53,143,62,124),(54,139,63,126)]])

78 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G4H6A···6AB12A···12AF
order1222223333444444446···612···12
size11112222222222363636362···22···2

78 irreducible representations

dim111111222222222
type++++++++-++-
imageC1C2C2C2C2C2S3D4Q8D6D6C4○D4C3⋊D4Dic6C4○D12
kernelC6210Q8C6.Dic6C12⋊Dic3C625C4C2×C324Q8C2×C6×C12C22×C12C3×C12C62C2×C12C22×C6C3×C6C12C2×C6C6
# reps121211422842161616

Matrix representation of C6210Q8 in GL6(𝔽13)

100000
12120000
009000
000300
000010
000001
,
1200000
0120000
003000
000900
000030
000009
,
500000
880000
001000
000100
000050
000008
,
12110000
110000
000100
001000
000001
0000120

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,0,12,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,9],[5,8,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[12,1,0,0,0,0,11,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C6210Q8 in GAP, Magma, Sage, TeX

C_6^2\rtimes_{10}Q_8
% in TeX

G:=Group("C6^2:10Q8");
// GroupNames label

G:=SmallGroup(288,781);
// by ID

G=gap.SmallGroup(288,781);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,253,120,254,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^3,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽